Authors

1 Department of Microbiology, College of Medicine and Health Sciences, National University of Science and Technology, Sohar Campus, Sohar, Sultanate of Oman

2 Department of Community Medicine, All India Institute of Medical Sciences, Mangalagiri, Andhra Pradesh, India

Abstract

Antibiotics once regarded as magic bullets are no more considered so. Overuse of antibiotics in
humans, agriculture, and animal husbandry has resulted in the emergence of a wide range of
multidrug‑resistant  (MDR) pathogens which are difficult to treat. Antimicrobial resistance  (AMR)
is a serious global health problem associated with high mortality in the era of modern medicine.
Moreover, in the absence of an effective antibiotic, medical and surgical interventions can highly
become a risk. In recent times, the decreased incline of pharmaceutical industries toward research
and development of newer effective antibiotics to fight this MDR pathogens have further fuelled
the scarcity of antibiotics, thus the number of antibiotics in the pipeline is extremely limited. Hence
it is high time for the development of new strategies to fight against dangerous MDR pathogens.
Currently, several novel approaches explored by scientists have shown promising results pertaining
to their antimicrobial activity against pathogens. In this article, the authors have summarized various
novel therapeutic options explored to contain AMR with special attention to the mechanism of action,
advantages, and disadvantages of different approaches.


Keywords

1. Dadgostar P. Antimicrobial resistance: Implications and costs.
Infect Drug Resist 2019;12:3903‑10.
2. Sannathimmappa MB, Nambiar V, Aravindakshan R.
A cross‑sectional study to evaluate the knowledge and attitude
of medical students concerning antibiotic usage and antimicrobial
resistance. Int J Acad Med 2021; 7: 113‑119,
3. Ventola CL. The antibiotic resistance crisis: Part 1: Causes and
threats. P T 2015;40:277‑83.
4. Munita JM, Arias CA. Mechanisms of antibiotic resistance.
Microbiol Spectr 2016;4 (2): 1‑36.
5. Singh S, Singh SK, Chowdhury I, Singh R. Understanding the
mechanism of bacterial biofilms resistance to antimicrobial agents.
Open Microbiol J 2017;11:53‑62.
6. Appelbaum PC. 2012 and beyond: potential for the start of a
second pre‑antibiotic era? J Antimicrob Chemother 2012;67:2062‑8.
7. Yu T, Jiang G, Gao R, Chen G, Ren Y, Liu J, et al. Circumventing
antimicrobial‑resistance and preventing its development in novel,
bacterial infection‑control strategies. Expert Opin Drug Deliv
2020;17:1151‑64.
8. Wangoo, N, Suri CR, Shekhawat G. Interaction of gold
nanoparticles with protein: A spectroscopic study to monitor
protein conformational changes. Appl Phys Lett 2008;92:1‑4.
9. GholipourmalekabadiM, MobarakiM, GhaffariM, ZarebkohanA,
Omrani V, Urbanska A, et al. Targeted drug delivery based on
gold nanoparticle derivatives. Curr Pharm Des 2017;23:2918‑29.
10. Baptista PV, McCusker MP, Carvalho A, Ferreira DA, Mohan NM,
Martins M, et al. Nano‑Strategies to Fight Multidrug Resistant
Bacteria – “A Battle of the Titans”. Front Microbiol 2018;9:1441.
11. Hemeg HA. Nanomaterials for alternative antibacterial therapy.
Int J Nanomed 2017;12:8211‑25.
12. Slavin YN, Asnis J, Häfeli UO, Bach H. Metal nanoparticles:
Understanding the mechanisms behind antibacterial activity.
J Nanobiotechnology 2017;15:65.
13. Bassegoda A, Ivanova K, Ramon E, Tzanov T. Strategies to prevent
the occurrence of resistance against antibiotics by using advanced
materials. Appl Microbiol Biotechnol 2018;102:2075‑89.
14. Katva S, Das S, Moti HS, Jyoti A, Kaushik S. Antibacterial Synergy
of Silver Nanoparticles with Gentamicin and Chloramphenicol
against Enterococcus faecalis. Pharmacogn Mag 2018;13:S828‑33.
15. Siddiqi KS, Husen A, Rao RAK. A review on biosynthesis
of silver nanoparticles and their biocidal properties.
J Nanobiotechnology 2018;16:14.
16. AlMatar M, Makky EA, Var I, Koksal F. The role of nanoparticles
in the inhibition of multidrug‑resistant bacteria and biofilms.
Curr. Drug Deliv 2017;15:470‑84.
17. Dwivedi S, Wahab R, Khan F, Mishra YK, Musarrat J,
Al‑Khedhairy AA. Reactive oxygen species mediated bacterial
biofilm inhibition via zinc oxide nanoparticles and their statistical
determination. PLoS One 2014;9:e111289.
18. Umamaheswari K, Baskar R, Chandru K, Rajendiran N,
aChandirasekar S. Antibacterial activity of gold nanoparticles
and their toxicity assessment. BMC Infect Dis 2014;14:P64.
19. Reddy LS, Nisha MM, Joice M, Shilpa, PN. Antimicrobial activity
of zinc oxide (ZnO) nanoparticle against Klebsiella pneumoniae.
Pharm Biol 2014;52:1388‑97.
20. Foster HA, Ditta IB, Varghese S, Steele A. Photocatalytic
disinfection using titanium dioxide: Spectrum and mechanism of
antimicrobial activity. Appl Microbiol Biotechnol 2011;90:1847‑68.
21. Ansari MA, Khan HM, Khan AA, Cameotra SS, Saquib Q,
MusarratJ. Interaction of Al(2) O (3) nanoparticles with Escherichia
coli and their cell envelope biomolecules. J Appl Microbiol
2014;116:772‑83.
22. Joost U, Juganson K, Visnapuu M, Mortimer M, Kahru A,
Nommiste E, et al. Photocatalytic antibacterial activity of
nano‑TiO2 (anatase)‑based thin films: Effects on Escherichia coli
cells and fatty acids. J. Photochem. Photobiol 2015;142:178‑85.
23. Yu Q, Li J, Zhang Y, Wang Y, Liu L, Li M. Inhibition of gold
nanoparticles (AuNPs) on pathogenic biofilm formation and
invasion to host cells. Sci Rep 2016;6:26667.
24. Miao L, Wang C, Hou J, Wang P, Ao Y, Li Y, et al. Aggregation
and removal of copper oxide (CuO) nanoparticles in wastewater
environment and their effects on the microbial activities of
wastewater biofilms. Bioresour Technol 2016;216:537‑44.
25. Kulshrestha S, Qayyum S, Khan AU. Antibiofilm efficacy of
green synthesized graphene oxide‑silver nanocomposite using Lagerstroemia speciosa floral extract: A comparative study on
inhibition of gram‑positive and gram‑negative biofilms. Microb
Pathog 2017;103:167‑77.
26. Hadiya S, Liu X, Abd El‑Hammed W, Elsabahy M, Aly SA.
Levofloxacin‑loaded nanoparticles decrease emergence of
fluoroquinolone resistance in Escherichia coli. Microb Drug Resist
2018;24:1098‑107.
27. GholipourmalekabadiM, MobarakiM, GhaffariM, ZarebkohanA,
Omrani VF, Urbanska AM, et al. Targeted drug delivery based on
gold nanoparticle derivatives. Curr Pharm Design 2017;23:2918.
28. HuhAJ, KwonYJ. “Nanoantibiotics”: Anew paradigm for treating
infectious diseases using nanomaterials in the antibiotics resistant
era. J Control Release 2011;156:128‑45.
29. Panáček A, Kvítek L, Smékalová M, Večerová R, KolárM,
Röderová M, et al. Bacterial resistance to silver nanoparticles and
how to overcome it. Nat Nanotechnol 2018;13:65‑71.
30. Kaweeteerawat C, Na Ubol P, Sangmuang S, Aueviriyavit S,
Maniratanachote R. Mechanisms of antibiotic resistance in
bacteria mediated by silver nanoparticles. J Toxicol Environ
Health A 2017;80:1276‑89.
31. Pissuwan D, Niidome T, Cortie MB. The forthcoming applications
of gold nanoparticles in drug and gene delivery systems. J Control
Release 2011;149:65‑71.
32. Saha B, Bhattacharya J, Mukherjee A, Ghosh A, Santra C,
Anjan K, et al. In vitro structural and functional evaluation of
gold nanoparticles conjugated antibiotics. Nanoscale Res Lett
2007;2:614‑22.
33. Fayaz MA, Mahdy GM, Somsundar SA, Venkatesan SS,
Kalaichelvan PT. Vancomycin bound biogenic gold nanoparticles:
A different perspective for development of anti VRSA agents.
Process Biochem 2011;46:636‑41.
34. Singh R, Nawale L, Arkile M, Wadhwani S, Shedbalkar U,
Chopade S, et al. Phytogenic silver, gold, and bimetallic
nanoparticles as novel antitubercular agents. Int J Nanomed
2016;11:1889‑97.
35. Fakhri A, Tahami S, Naji M. Synthesis and characterization of
core‑shell bimetallic nanoparticles for synergistic antimicrobial
effect studies in combination with doxycycline on burn specific
pathogens. J Photochem Photobiol B Biol 2017;169:21‑6.
36. Baker S, Pasha A, Satish S. Biogenic nanoparticles bearing
antibacterial activity and their synergistic effect with broad
spectrum antibiotics: Emerging strategy to combat drug resistant
pathogens. Saudi Pharm J 2017;25:44‑51.
37. Cho KH, Park JE, Osaka T, Park SG. The study of antimicrobial
activity and preservative effects of nanosilver ingredient.
Electrochim Acta 2005;51:956‑60.
38. BeythN, Houri‑HaddadY, DombA, KhanW, HazanR. Alternative
antimicrobial approach: Nano‑antimicrobial materials. Evid Based
Complement Alternat Med 2015;2015:246012.
39. Brives C, Pourraz J. Phage therapy as a potential solution in the
fight against AMR: Obstacles and possible futures. Palgrave
Commun 2020;6:100.
40. Pirnay JP. Phage therapy in the year 2035. Front Microbiol
2020;11:1171.
41. Sulakvelidze A, Alavidze Z, Morris JG Jr. Bacteriophage therapy.
Antimicrob Agents Chemother 2001;45:649‑59.
42. Principi N, Silvestri E, Esposito S. Advantages and limitations
of bacteriophages for the treatment of bacterial infections. Front
Pharmacol 2019;10:513.
43. Domingo‑Calap P, Delgado‑Martínez J. Bacteriophages:
Protagonists of a Post‑Antibiotic Era. Antibiotics (Basel)
2018;7:E66.
44. Sarker SA, McCallin S, Barretto C, Berger B, Pittet AC, Sultana S,
et al. Oral T4‑like phage cocktail application to healthy adult
volunteers from Bangladesh. Virology 2012;434:222‑32.
45. Kakasis A, Panitsa G. Bacteriophage therapy as an alternative
treatment for human infections. A comprehensive review. Int J
Antimicrob Agents 2019;53:16‑21.
46. Pouillot F, Chomton M, Blois H, Courroux C, Noelig J, Bidet P,
et al. Efficacy of bacteriophage therapy in experimental sepsis
and meningitis caused by a clone O25b: H4‑ST131 Escherichia
coli strain producing CTX‑M‑15. Antimicrob Agents Chemother
2012;56:3568‑75.
47. Lu TK, Collins JJ. Dispersing biofilms with engineered enzymatic
bacteriophage. Proc Natl Acad Sci U S A 2007;104:11197‑202.
48. Edgar R, Friedman N, Molshanski‑Mor S, Qimron U. Reversing
bacterial resistance to antibiotics by phage‑mediated delivery of
dominant sensitive genes. Appl Environ Microbiol 2012;78:744‑51.
49. Morozova VV, Kozlova YN, Ganichev DA, Tikunova NV.
Bacteriophage treatment of infected diabetic foot ulcers. Methods
Mol Biol 2018;1693:151‑8.
50. Fish R, Kutter E, Wheat G, Blasdel B, Kutateladze M, Kuhl S.
Bacteriophage treatment of intransigent diabetic toe ulcers: A case
series. J. Wound Care 2016;25:S27‑33.
51. McCallin S, Alam Sarker S, Barretto C, Sultana S, Berger B,
Huq S, et al. Safety analysis of a Russian phage cocktail: From
metagenomic analysis to oral application in healthy human
subjects. Virology 2013;443:187‑96.
52. Sarker SA, Sultana S, Reuteler G, Moine D, Descombes P,
Charton F, et al. Oral phage therapy of acute bacterial diarrhea
with two coliphage preparations: A randomized trial in children
from Bangladesh. EBioMedicine 2016;4:124‑37.
53. Essoh C, Blouin Y, Loukou G, Cablanmian A, Lathro S, Kutter E,
et al. The susceptibility of Pseudomonas aeruginosa strains from
cystic fibrosis patients to bacteriophages. PLoS One 2013;8:e60575.
54. Mattila S, Ruotsalainen P, Jalasvuori M. On‑demand isolation of
bacteriophages against drug‑resistant bacteria for personalized
phage therapy. Front Microbiol 2015;6:1271.
55. Merabishvili M, Vervaet C, Pirnay JP, De Vos D, Verbeken G,
Mast J, et al. Stability of Staphylococcus aureus phage ISP after
freeze‑drying (lyophilization). PLoS One 2013;8:e68797.
56. Seed KD. Battling phages: How bacteria defend against viral
attack. PLoS Pathog 2015;11:e1004847.
57. Maiques E, Ubeda C, Tormo MA, Ferrer MD, Lasa I, Novick RP,
et al. Role of staphylococcal phage and SaPI integrase in intra‑ and
interspecies SaPI transfer. J Bacteriol 2007;189:5608‑16.
58. Dąbrowska K, Miernikiewicz P, Piotrowicz A, Hodyra K,
Owczarek B, Lecion D, et al. Immunogenicity studies of proteins
forming the T4 phage head surface. J Virol 2014;88:12551‑7.
59. Verbeke F, Craemer SD, Debunne N, Janssens Y, Wynendaele E,
Christophe‑Wiel CV, et al. Peptides as quorum sensing molecules:
Measurement techniques and obtained levels in vitro and in vivo.
Front Neurosci 2017;11:183.
60. ZhaoX, YuZ, Ding T. Quorum‑sensing regulation of antimicrobial
resistance in bacteria. Microorganisms 2020;8:425.
61. Remy B, Mion S, Plener L, Elias M, Chabriere E, Daude D.
Interference in bacterial quorum sensing: A biopharmaceutical
perspective. Front Pharmacol 2018;9:203.
62. Munir S, Shah SS, Shahid M, Manzoor I, Aslam B, Rasool MH,
et al. Quorum sensing interfering strategies and their implications
in the management of biofilm‑associated bacterial infections. Braz
Arch Boil Technol 2020;63:e20190555
63. Zhao X, Zhao F, Wang J, Zhong N. Biofilm formation and control
strategies of foodborne pathogens: Food safety perspectives. RSC
Adv 2017;7:36670‑83.
64. Su T, Qiu Y, Hua X, Ye B, Luo H, Liu D, et al. (2020) Novel
Opportunity to Reverse Antibiotic Resistance: To Explore
Traditional Chinese Medicine With Potential Activity Against
Antibiotics‑Resistance Bacteria. Front. Microbiol 2020; 11: 610070
65. Krzy˙zek P. Challenges and limitations of anti‑quorum sensing
therapies. Front Microbiol 2019;10:2473.
66. Boparai JK, Sharma PK. Mini review on antimicrobial peptides,
sources, mechanism and recent applications. Protein Pept Lett 2020;27:4‑16.
67. León‑Buitimea A, Garza‑Cárdenas CR, Garza‑Cervantes JA,
Lerma‑Escalera JA, Morones‑Ramírez JR. The demand for
new antibiotics: Antimicrobial peptides, nanoparticles, and
combinatorial therapies as future strategies in antibacterial agent
design. Front Microbiol 2020;11:1669.
68. Divyashree M, Mani MK, Reddy D, Kumavath R, Ghosh P,
Azevedo V, et al. Clinical Applications of Antimicrobial
Peptides (AMPs): Where do we stand now? Protein Pept Lett
2020;27:120‑34.
69. de Breij A, Riool M, Cordfunke RA, Malanovic N, de Boer L,
Koning RI, et al. The antimicrobial peptide SAAP‑148
combats drug‑resistant bacteria and biofilms. Sci Transl Med
2018;10:eaan4044.
70. Duplantier AJ, van Hoek ML. The human cathelicidin
antimicrobial peptide LL‑37 as a potential treatment for
polymicrobial infected wounds. Front Immunol 2013;4:143.
71. van der Weide H, Vermeulen‑de Jongh DMC, van der Meijden A,
Boers SA, Kreft D, Ten Kate MT, et al. Antimicrobial activity of
two novel antimicrobial peptides AA139 and SET‑M33 against
clinically and genotypically diverse Klebsiella pneumoniae
isolates with differing antibiotic resistance profiles. Int J
Antimicrob Agents 2019;54:159‑66.
72. Chung PY, Khanum R. Antimicrobial peptides as potential
anti‑biofilm agents against multidrug‑resistant bacteria.
J Microbiol Immunol Infect 2017;50:405‑10.
73. Aoki W, Ueda M. Characterization of Antimicrobial
Peptides toward the Development of Novel Antibiotics.
Pharmaceuticals (Basel) 2013;6:1055‑81.
74. MaoY, Hoffman T, Singh‑Varma A, Duan‑ArnoldY, Moorman M,
Danilkovitch A, et al. Antimicrobial peptides secreted from
human cryopreserved viable amniotic membrane contribute to
its antibacterial activity. Sci Rep 2017;7:13722.
75. Eckert R, Qi F, Yarbrough DK, He J, Anderson MH, Shi W.
Adding selectivity to antimicrobial peptides: rational design of
a multidomain peptide against Pseudomonas spp. Antimicrob
Agents Chemother 2006;50:1480‑8.
76. Xu L, Shao C, Li G, Shan A, Chou S, Wang J, et al. Conversion
of broad‑spectrum antimicrobial peptides into species‑specific
antimicrobials capable of precisely targeting pathogenic bacteria.
Sci Rep 2020;10:944.
77. Mark HW, McGovern BH, Hecht GA, The efficacy and safety
of fecal microbiota transplant for recurrent clostridium difficile
infection: Current understanding and gap analysis. Open Forum
Infect Dis 2020;7:114.
78. Kim KO, Gluck M. Fecal microbiota transplantation: An update
on clinical practice. Clin Endosc 2019;52:137‑43.
79. Chin SM, Sauk J, Mahabamunuge J, Kaplan JL, Hohmann EL,
Khalili H. Fecal microbiota transplantation for recurrent
clostridium difficile infection in patients with inflammatory bowel
disease: A single‑center experience. Clin Gastroenterol Hepatol
2017;15:597‑9.
80. Quraishi MN, Widlak M, Bhala N, Moore D, Price M, Sharma N,
et al. Systematic review with meta‑analysis: The efficacy of faecal
microbiota transplantation for the treatment of recurrent and
refractory Clostridium difficile infection. Aliment Pharmacol
Ther 2017;46:479‑93.
81. Fischer M, Sipe B, Cheng YW, Phelps E, Rogers N, Sagi S, et al.
Fecal microbiota transplant in severe and severe‑complicated
Clostridium difficile: A promising treatment approach. Gut
Microbes 2017;8:289‑302.
82. Moayyedi P, Yuan Y, Baharith H, Ford AC. Faecal microbiota
transplantation for Clostridium difficile‑associated diarrhoea:
A systematic review of randomised controlled trials. Med J Aust
2017;207:166‑72.
83. Zhang SL, Wang SN, Miao CY. Influence of microbiota on
intestinal immune system in ulcerative colitis and its intervention.
Front Immunol 2017;8:1674.
84. Vindigni SM, Zisman TL, Suskind DL, Damman CJ. The
intestinal microbiome, barrier function, and immune system
in inflammatory bowel disease: A tripartite pathophysiological
circuit with implications for new therapeutic directions. Therap
Adv Gastroenterol 2016;9:606‑25.
85. Costello SP, Soo W, Bryant RV, Jairath V, Hart AL, Andrews JM.
Systematic review with meta‑analysis: Faecal microbiota
transplantation for the induction of remission for active ulcerative
colitis. Aliment Pharmacol Ther 2017;46:213‑24.
86. Paramsothy S, Kamm MA, Kaakoush NO, Walsh AJ, van
den Bogaerde J, Samuel D, et al. Multi donor intensive
faecal microbiota transplantation for active ulcerative colitis:
A randomised placebo‑controlled trial. Lancet 2017;389:1218‑28.
87. Newman KM, Rank KM, Vaughn BP, Khoruts A. Treatment of
recurrent Clostridium difficile infection using fecal microbiota
transplantation in patients with inflammatory bowel disease. Gut
Microbes 2017;8:303‑9.
88. Kelly BJ, Tebas P. Clinical practice and infrastructure review of
fecal microbiota transplantation for clostridium difficile infection.
Chest 2018;153:266‑77.
89. Relman DA, Lipsitch M. Microbiome as a tool and a target in the
effort to address antimicrobial resistance. Proc Natl Acad Sci U
S A 2018;115:12902‑10.
90. Brinkac L, Voorhies A, Gomez A, Nelson KE. The threat of
antimicrobial resistance on the human microbiome. Microb Ecol
2017;74:1001‑8.
91. Alexander M, Newman MD, Mehereen MD. The role of probiotics,
prebiotics and synbiotics in combating multidrug‑resistant
organisms. Clin Ther 2020;42:1637‑48.
92. Gibson GR, Roberfroid MB. Dietary modulation of the human
colonic microbiota: Introducing the concept of prebiotics. J Nutr
1995;125:1401‑12.
93. BruhwylerJ, Carreer F, Demanet E, Jacobs H. Digestive tolerance
of inulin‑type fructans: A double‑blind, placebo‑controlled,
cross‑over, dose‑ranging, randomized study in healthy
volunteers. Int J Food Sci Nutr 2009;60:165‑75.
94. Welters CF, Heineman E, Thunnissen FB, van den Bogaard AE,
Soeters PB, Baeten CG. Effect of dietary inulin supplementation
on inflammation of pouch mucosa in patients with an ileal
pouch‑anal anastomosis. Dis Colon Rectum 2002;45:621‑7.
95. Iyama S, Sato T, Tatsumi H, Hashimoto A, Tatekoshi A,
Kamihara Y, et al. Efficacy of enteral supplementation enriched
with glutamine, fiber, and oligosaccharide on mucosal injury
following hematopoietic stem cell transplantation. Case Rep
Oncol 2014;7:692‑9.
96. Dehghan P, Gargari BP, Jafar‑Abadi MA, Aliasgharzadeh A.
Inulin controls inflammation and metabolic endotoxemia in
women with type 2 diabetes mellitus: A randomized‑controlled
clinical trial. Int J Food Sci Nutr 2014;65:117‑23.
97. Ouwehand AC, Forssten S, Hibberd AA, Lyra A, Stahl B.
Probiotic approach to prevent antibiotic resistance. Ann Med
2016;48:246‑55.
98. Lin X, Chen X, Chen Y, Jiang W, Chen H. The effect of five
probiotic lactobacilli strains on the growth and biofilm formation
of Streptococcus mutans. Oral Dis 2015;21:e128‑34.
99. Skljarevski S, Barner A, Bruno‑Murtha LA. Preventing avoidable
central line‑associated bloodstream infections: Implications for
probiotic administration and surveillance. Am J Infect Control
2016;44:1427‑8.
100. Meini S, Laureano R, Fani L, Tascini C, Galano A, Antonelli A,
et al. Breakthrough Lactobacillus rhamnosus GG bacteremia
associated with probiotic use in an adult patient with severe
active ulcerative colitis: Case report and review of the literature.
Infection 2015;43:777‑81.
101. López de Toro Martín‑Consuegra I, Sanchez‑Casado M,
Pérez‑Pedrero Sánchez‑Belmonte MJ, López‑Reina Torrijos P,Sánchez‑Rodriguez P, Raigal‑Caño A, et al. The influence of
symbiotics in multi‑organ failure: Randomised trial. Med
Clin (Barc) 2014;143:143‑9.
102. Salomão MC, Heluany‑Filho MA, Menegueti MG, Kraker ME,
Martinez R, Bellissimo‑Rodrigues F. A randomized clinical trial
on the effectiveness of a symbiotic product to decolonize patients
harboring multidrug‑resistant Gram‑negative bacilli. Rev Soc Bras
Med Trop 2016;49:559‑66.
103. Vadhana P, Singh BR, Bharadwaj M, Singh SV. Emergence of
herbal antimicrobial drug resistance in clinical bacterial isolates.
Pharm Anal Acta 2015;6:434.
104. Kavanaugh NL, Ribbeck K. Selected antimicrobial essential oils
eradicate Pseudomonas spp. and Staphylococcus aureus biofilms.
Appl Environ Microbiol 2012;78:4057‑61.
105. Moore‑Neibel K, Gerber C, Patel J, Friedman M, Ravishankar S.
Antimicrobial activity of lemongrass oil against Salmonella
enterica on organic leafy greens. J Appl Microbiol 2012;112:485‑92.
106. Singh BR, Singh V, Singh RK, Toppo S, Haque N. Antimicrobial
effect of Artemisia vulgaris essential oil. Nat Prod Indian J
2011;7:5‑12.
107. Khan R, Islam B, Akram M, Shakil S, Ahmad A, Ali SM, et al.
Antimicrobial activity of five herbal extracts against multi drug
resistant (MDR) strains of bacteria and fungus of clinical origin.
Molecules 2009;14:586‑97.
108. Brown JC, Jiang X. Prevalence of antibiotic‑resistant bacteria in
herbal products. J Food Prot 2008;71:1486‑90.
109. Ujam NT, Oli AN, Ikegbunam MN, Adikwu MU, Esimone CO.
Antimicrobial resistance evaluation of organisms isolated from
liquid herbal products manufactured and marketed in South
Eastern Nigeria. J Pharm Res Int 2013;3:548‑62.
110. Ogunshe AA, Kolajo TT. In vitro phenotypic antibiotic resistance
in bacterial flora of some indigenous orally consumed herbal
medications in Nigeria. J Rural Trop Publ Hlth 2006;5:9‑15.
111. Mohebbi B, Tol A, Sadeghi R, Yaseri M, Akbari Somar N,
Doyore Agide F. The efficacy of social cognitive theory‑based
self‑care intervention for rational antibiotic use: A randomized
trial. Eur J Public Health 2018;28:735‑9.
112. Sannathimmappa MB, Nambiar V, Aravindakshan R,
Al-Kasaby NM. Profile and antibiotic-resistance pattern of
bacteria isolated from endotracheal secretions of mechanically
ventilated patients at a tertiary care hospital. J Edu Health Promot
2021;10:195.
113. Sannathimmappa MB, Nambiar V, Aravindakshan R,
Al Khabori MS, Al-Flaiti AH, Al-Azri KN, et al. Diabetic foot
infections: Profile and antibiotic susceptibility patterns of bacterial
isolates in a tertiary care hospital of Oman. J Edu Health Promot
2021;10:254.
114. Sannathimmappa MB, Nambiar V, Aravindakshan R. Antibiotic
resistance pattern of Acinetobacter baumannii strains: A
retrospective study from Oman. Saudi J Med Med Sci 2021;9:25460. DOI: 10.4103/sjmms.sjmms_855_20.
115. Sannathimmappa MB, Nambiar V, Aravindakshan R, Al-Kasaby
NM. Profile and antibiotic-resistance pattern of bacteria isolated
from endotracheal secretions of mechanically ventilated patients
at a tertiary care hospital. J Edu Health Promot 2021;10:195. DOI:
10.4103/jehp.jehp_1517_20.