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Antibiotics at the crossroads – Do we 
have any therapeutic alternatives to 
control the emergence and spread of 
antimicrobial resistance?
Mohan Bilikallahalli Sannathimmappa1, Vinod Nambiar1, Rajeev Aravindakshan2

Abstract:
Antibiotics once regarded as magic bullets are no more considered so. Overuse of antibiotics in 
humans, agriculture, and animal husbandry has resulted in the emergence of a wide range of 
multidrug‑resistant  (MDR) pathogens which are difficult to treat. Antimicrobial resistance  (AMR) 
is a serious global health problem associated with high mortality in the era of modern medicine. 
Moreover, in the absence of an effective antibiotic, medical and surgical interventions can highly 
become a risk. In recent times, the decreased incline of pharmaceutical industries toward research 
and development of newer effective antibiotics to fight this MDR pathogens have further fuelled 
the scarcity of antibiotics, thus the number of antibiotics in the pipeline is extremely limited. Hence 
it is high time for the development of new strategies to fight against dangerous MDR pathogens. 
Currently, several novel approaches explored by scientists have shown promising results pertaining 
to their antimicrobial activity against pathogens. In this article, the authors have summarized various 
novel therapeutic options explored to contain AMR with special attention to the mechanism of action, 
advantages, and disadvantages of different approaches.
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Introduction

Increasingly recognized antimicrobial 
resistance  (AMR) in the modern world 

is a global health concern. Without 
effective antibiotics, treating infections has 
become extremely difficult. Furthermore, 
medical and surgical interventions can 
highly become a risk.[1] Though AMR 
is a natural phenomenon, acceleration 
of development of resistance to many 
folds is contributed by multiple factors. 
Figure  1 depicts common contributing 
factors for the development of AMR. 
Overuse/misuse of antibiotics in humans, 
animals, and agriculture, inadequate 

infection control practices, increased use 
of invasive devices, inadequate facilities 
for rapid diagnosis of infections, increased 
national and international travel are the key 
contributing factors for the rapid emergence 
of drug‑resistant pathogens.[1,2] In addition, 
the decreased incline of pharmaceutical 
industries toward research and development 
of newer antibiotics has led to the scarcity of 
newer effective antibiotics to treat infections 
caused by multidrug‑resistant  (MDR) 
pathogens.[3] Bacteria have developed AMR 
by several mechanisms. Among those are 
enzymatic drug inactivation/modification, 
altered target production, decreased drug 
permeability, increased efflux due to 
over‑expression of efflux pumps, bypassing 
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of metabolic pathway/overproduction of target, 
target mimicry, and others.[4] Biofilm formation and 
quorum sensing (QS) are the more recently recognized 
drug‑resistant mechanisms, often triggered by exposure 
to antibiotics.[5] Antibiotics are no more regarded as 
magic bullets, rapid and continuous emergence of drug 
resistance may sooner lead to “pre‑antibiotic” era if 
the problem is not taken seriously.[6] This has triggered 
initiatives globally to develop novel and more effective 
strategies to combat drug resistance menace. Currently, 
several promising strategies, alternative to antibiotic 
therapy are in different stages of clinical trials, showing 
promising signs, few may sooner be approved for 
human therapy.[7] Figure 2 depicts the common novel 
strategies which are currently in different stages of 
clinical trials. The present article outlines the latest 
alternative approaches to antibiotic therapy to control 
the emergence and spread of AMR with a special focus 
on the mechanisms, advantages, and disadvantages of 
various novel approaches.

Nanoparticles

Nanomaterials have at least one dimension in the 
nanometer scale range  (1–100  nm), as a result, there 
is a considerable difference in their physical and 
chemical properties from those of bulk materials.[8] 
Nanoparticles  (NPs) have several distinct properties 
such as ultra‑small size, high surface to volume ratio, 
enhancement of drug solubility and stability, easy way of 
synthesis, biocompatibility with target agents, and their 
modulated release that can be controlled by stimuli such 
as heat, temperature, and pH.[8,9] In addition, they have 
microbicidal properties which have led to the new hope 
in utilizing NPs to combat drug‑resistant pathogens.[10] 
NPs have shown promising alternative solutions as 
they not only have microbicidal effects by themselves 
but also can act as carriers for delivering antibiotic 
molecules and natural antimicrobial compounds.[8] 
Several NPs such as Ag-NPs, Zn-NPs, Au-NPs, Al-NPs, 
Cu-NPs, Ce-NPs, Cd-NPs, Ti-NPs, etc. and metallic oxide 

nanoparticles (NPOs) Such as ZnO-NPs, CdO-NPs, CuO-
NPs, TiO2-NPs, and Au2O3-NPs have shown bactericidal 
effects.[8,11,12] NPs are of extreme use to tackle MDR 
pathogens, as they exert antibacterial activity through 
multiple mechanisms unlike antibiotics which have one 
specific target.[8] Induction of intracellular effects such as 
interaction with DNA, cell membrane, bacterial proteins, 
RNA, etc., direct cell wall damage, oxidative damage 
to cellular structures by generation of reactive oxygen 
species  (ROS), inhibition of biofilm formation, and 
activation of both innate and adaptive immune responses 
are the well‑recognized killing mechanisms generated by 
NPs.[13‑16] Figure 3 shows the antibacterial mechanisms 
of NPs and NPOs. The oxidative stress, metallic ion 
release, and nonoxidative mechanisms are still the 
most recognized antibacterial mechanisms induced by 
NPs.[8] The production of ROS namely superoxide (O‑

2), 
hydroxyl radical  (OH‑), hydrogen peroxide  (H2O2), 
and singlet oxygen 1[O2] results in disturbed redox 
homeostasis resulting in oxidative stress, affecting 
membrane lipids and altering the structure of DNA 
and proteins, and thus significantly enhance bacterial 
death.[17] Several studies have demonstrated microbicidal 
effect of Ag-NPs, Au-NPs, ZnO-NPs, and TiO2-NPs 
against MDR pathogens such as Escherichia coli, Klebsiella 
pneumoniae, Pseudomonas aeruginosa, Acinetobacter 
baumannii, Methicillin‑resistant Staphylococcus  aureus, 
and Enterococcus faecalis by oxidative stress through 
production ROS.[18‑20] Non‑oxidative killing mechanisms 
involve interference of NPs with cell wall and cell 
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membrane which act as defensive barriers by protecting 
cell and its contents from the environmental insult.[8] A 
study has demonstrated the accumulation of NPs in the 
cell wall leads to formation of irregularly shaped pits, 
perforation, and disturbance in metabolic process.[21] 
Another study by Joost et al. demonstrated that treatment 
with TiO2NP causes increased cell volume and thereby 
result in membrane leakage and cell death.[22] Numerous 
experimental studies have also demonstrated that NPs 
are capable of inhibiting biofilm formation and survival 
of microorganisms by disruption of cell membrane.[23‑25]

Besides as broad‑spectrum microbicidal agents, utilizing 
NPs as vectors to deliver antimicrobial agents has 
greatly enhanced their effectiveness.[8,9,26] The most 
attractive characteristic of NPs is their ability to deliver 
a wide range of therapeutics, either bound to their large 
surface area or enclosed within the structure to the site 
of infection effectively and safely at a controlled rate of 
target delivery.[27] One of the obstacles associated with 
antibiotic therapy is their poor membrane transport. 
This limitation can be overcome by using drug‑loaded 
NPs which can enter by endocytosis, thereby facilitate 
effective intracellular drug delivery.[8,10] Membrane 
penetration can also be achieved by using certain NPs 
such as Au2O3-NPs which are capable of interacting with 
surface lipids.[10] Furthermore, multiple antibiotics can be 
loaded with NPs and delivered, thereby a highly complex 
antimicrobial mechanism of action can be achieved to 
which bacteria are unlikely to develop resistance.[28] 
However, there are reports suggesting the development 
of resistance to Ag-NPs and also, exposure to NPs may 
enhance microbial tolerance to these NPs.[29,30]

Apart from drug delivery, NPs can also increase 
the potency of the antimicrobial agent passively 
by facilitating prolonged drug retention at the 
specific infection site or actively through surface 
conjugation with active molecules that bind to a certain 

target.[8,10] Therefore, designing an effective drug 
delivery strategy must carefully consider the balance 
between the surface modification interaction strength, 
the rate of compound release, and the stability of the 
conjugate.[10,31] Several researchers have investigated 
the conjugation of antibiotics to NPs to overcome 
their potential therapeutic limitation.[10] A study has 
demonstrated better achievement of minimum inhibitory 
concentration with the use of conjugated ampicillin, 
kanamycin, and streptomycin with gold NPs against 
both Gram‑positive and Gram‑negative bacteria 
compared to the use of these free drug counterparts.[32] 
Another study attempted to uncover the mechanism 
of action of vancomycin loaded Au-NPs against 
vancomycin‑resistant Staphylococcus aureus.[33] The study 
proposed that only when the drug is conjugated with 
NPs could result in nonspecific multivalent interactions 
and anchoring of carrier to proteins involved in cell wall 
synthesis.[33] Furthermore, the authors concluded that the 
consequences of nonspecific binding of NPs has resulted 
in compromised membrane stability and subsequent cell 
death by demonstrating pits in the cells by visualization 
through transmission electron microscope.[33] Few 
researchers also have demonstrated the use of bimetallic 
NPs compared to single NPs enhances the efficacy 
of drug many folds against several MDR pathogens 
and also reduces the required therapeutic dosage.[34‑36] 
Bimetallic NPs have shown improved electronic, optical, 
and catalytic properties compared to monometallic 
NPs.[37]

Despite the great potential of NPs to prevent and 
treat bacterial infections, several gridlocks pertaining 
to the short term and long term exposure of NPs to 
humans needs to be explored. Some of these include 
biocompatibility, the interaction of NPs/nanoantibiotics 
with cells, tissues, and organs, potential toxicity, 
clearance, and metabolism, apart from economic impact 
as the preparation of NPs is expensive.[10,38]

Phage Therapy

Bacteriophages  (BPs) are viruses that can infect and 
kill bacteria without affecting human cells. They are 
ubiquitously found in the ecosystem; soil, water, 
oceanic and terrestrial surfaces and known to have 
controlled the growth and spread of bacteria since 
ancient ages. Phages are tiny particles made up of 
protein or proteo‑lipid capsids enclosing fragments of 
nucleic acids  (either DNA or RNA, most often DNA) 
and are present wherever bacteria are present in the 
environment.[39] Phages can be said to be virulent (lytic) 
or temperate (lysogenic) based on their developmental 
life cycle.[39] The virulent phages, capable of bacterial 
lysis are relevant in the context of BP therapy.[39] Early 
evidence of antibacterial activity of phages was reported 
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by the English bacteriologist Frederick Twort, and by 
the French‑Canadian microbiologist Felix d’Hérelle 
in 1915 and 1917, respectively.[40] In 1919, following a 
successful phage therapy in treating a boy who presented 
with bacterial dysentery, phage therapy got recognized 
immediately as a therapeutic option in treating 
bacterial infections.[41] However, subsequently, with the 
discovery of penicillin and other antibiotics and their 
worldwide marketing, the use of phages as potential 
therapeutic agents lost attention.[41] The increasing 
global health burden of infections, especially caused 
by MDR pathogens in the 21st century incited renewed 
interest in phage therapy as an additional tool to treat 
bacterial infections.[39] BPs have several advantages over 
antibiotics to treat bacterial infections. Firstly, at least one 
BP is available against any one type of bacteria. In this 
regard, they are more effective than antibiotics, though 
there are some antibiotics that have a wide spectrum of 
activity. However, there is no single antibiotic available 
that can kill all bacteria that exist.[42] Secondly, BPs have 
a narrow spectrum of activity and kill only the bacteria 
that they recognize. This avoids the most important 
problem related to antibiotic therapy i.e.  destruction 
and elimination of normal microbiota of skin, gut, 
and oral cavity, easy colonization and overgrowth of 
pathogen bacteria, and the emergence of drug‑resistant 
bacteria.[43] A study demonstrated bacterial specificity of 
BPs by administering a cocktail of nine T4‑like Escherichia 
coli BPs to 15 healthy individuals. After 2 days of the 
administration, they could isolate the phages in the feces 
of all the treated individuals and there was no evidence 
of alteration in their microbial flora.[44] Additionally, 
BPs have many more advantages over antibiotics. BPs 
are regarded as safer, cheaper, and better tolerated 
since they infect and replicate only in target bacterium 
without affecting human cells.[45] Furthermore, BPs are 
easy to administer, do not require repeated doses unlike 
antibiotics since they can remain in the human body 
for up to several days.[42] Hence, generally few doses 
are enough to achieve optimum concentration at the 
site of infection. Unlike antibiotics, the effect of BPs is 
limited to the site of infection and are capable of reaching 
bacteria residing in any organ or system of the human 
body, which is hard to be penetrated by antibiotics.[46] A 
recently recognized biofilm‑mediated resistance, harder 
to counteract by antibiotics can be easily dealt with BPs 
modified by modern DNA technologies. Lu and Collins 
demonstrated the destruction of E. coli biofilms by using 
genetically engineered BPs. The study results were 
encouraging as genetically engineered BPs can attack 
simultaneously bacteria cell and biofilm matrix and 
reduce biofilm count almost to zero levels.[47] Besides, 
Edgar et al. demonstrated genetically modified BPs can be 
useful to fight against AMR.[48] Currently, several studies 
on human beings have shown the benefits of topical 
application of BPs in treating wound infections including 

diabetic foot infections.[49,50] Additionally, several 
randomized clinical trials  (RCTs) have demonstrated 
the positive outcome of phage therapy to treat bacterial 
diarrhea and respiratory infections including in cystic 
fibrosis patients.[51‑53] However, there are certain factors 
that limit the use of BPs in human therapy. Firstly, the 
available data of phage therapy in human trials are 
few and are from non‑randomized and placebo control 
studies. Secondly, identification, isolation of specific 
phages, and therapeutic preparation of phages for 
human use are complicated.[54] It involves sequencing 
of phage genome and deletion of gene segments that 
might encode for integrase, antibiotic resistance, 
toxin production, and others. In addition, it requires 
formulation and stabilization of pharmaceutical product 
separately for each phage, that could lead to more 
expenses and time‑consuming. This could demotivate 
pharmaceutical industries to conduct extensive research 
and phage preparation for human therapy.[42,55] Third, 
the potential possibility of the development of bacterial 
resistance mechanisms to phages cannot be ruled out. 
Modification of binding receptors, secretion of substances 
that interfere with the adhesion of phages to bacterial 
surfaces, interference with injection of phage nucleic 
acid, phage replication, and release may make phages 
ineffective.[56] Fourthly, phages by themselves may 
contribute to the development of drug‑resistant bacteria 
and may result in the emergence of new, more resistant 
bacterial pathogens. Temperate/lysogenic phages may 
integrate into bacterial DNA and consequently may act 
as potential vectors for horizontal gene transfer and 
diffusion of resistant genes among bacterial pathogen by 
a phenomenon of transduction.[57] Finally, BPs and their 
products are foreign antigens and therefore the immune 
system may induce an immune response and reduce 
their effectiveness.[58] To conclude, the present pieces of 
evidence obtained through non‑randomized trials are 
insufficient to allow the use of phages for human therapy. 
Furthermore, properly designed studies specifically 
targeted to solve the aforementioned problems are 
crucial before phages can be licensed for human therapy.

Quorum Sensing Inhibition

Quorum sensing (QS) is a cell‑to‑cell communication 
mechanism employed by the microbiome and it 
depends on microbial population density. The formation 
of high‑density microbial population results in the 
generation of a sufficient number of small signaling 
molecules  (autoinducers) that activate the expression 
of countless genes that control diverse functions such 
as biofilm formation, virulence, drug resistance, drug 
tolerance, production of siderophores, proteases, and 
others. Both Gram‑positive and Gram‑negative bacteria 
communicate through the QS mechanism but use different 
signaling molecules (autoinducers). N‑acyl homoserine 
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lacton  (AHL, also designated autoinducer‑1, AI‑1) 
molecules which are synthesized by LuxI‑type enzyme 
are predominantly used by Gram‑negative bacteria while 
auto‑inducer peptides  (AIP) are predominantly used 
by Gram‑positive bacteria.[59] Since QS is involved in a 
wide range of bacterial virulence mechanisms including 
AMR, hypothetically QS inhibition  (QSI) or quorum 
quenching seems to be a promising strategy to fight 
against various types of pathogens.[60] The phenomenon 
of quorum quenching causes the reduction of pathogens’ 
virulence by interrupting communication‑dependent 
pathogenicity induction through several mechanisms.[61] 
First, quenching molecules inhibit the production of 
signaling molecules such as AIP, AHL, etc. Second, 
by reducing the activity of QS molecules, and lastly, 
by the degradation of QS molecules.[61,62] With the 
increasing antibiotic resistance, researchers decipher 
the quorum quenching approach as a potential novel 
strategy to combat AMR. QS Signals produced by 
pathogens play a key role in biofilm formation. When 
QS signals reach a certain threshold, bacteria will secrete 
adhesion molecules involved in biofilm formation 
which occurs through several sequential phases namely 
attachment, micro‑colony formation, maturation, and 
dispersion.[63] Biofilm consists of bacterial cells and 
an extracellular polymeric substance composed of 
proteins, polysaccharides, and DNA that may interfere 
with the penetration of antibiotics and immune cells, 
thus inducing antibiotic tolerance. Besides, the biofilm 
with high bacterial cell density and increased QS 
induces selection pressure that ultimately enhances the 
rate of development of resistant cells through genetic 
mutation and horizontal gene transfer.[61,62] Quorum 
sensing inhibition plays a dual role on bacteria by 
preventing biofilm formation and expression of virulent 
genes.[64] However, several challenges and limitations are 
associated with quorum quenching such as modulation 
in metabolic activity, decrease in the threshold for QSI 
activation, biofilm formation, QSI mediated increase 
of virulence, and disturbance of host‑microbial flora, 
increase in resistance against QSI, etc., are the noted 
challenges that need to be extensively investigated.[65]

Antimicrobial Peptides

Anti‑microbial peptides (AMPs) also regarded as cationic 
host defense peptides are a highly diverse family of small 
proteins with a varying number of amino acids.[66] A wide 
range of AMPs are naturally found among classes of life 
such as animals, plants, bacteria, yeast, and also, they have 
been synthesized in laboratories.[67] These AMPs found to 
have a variety of biological activities such as antitumor, 
anti‑inflammatory, antibacterial, antifungal, antiviral, 
and antimitogenic activity, in addition to their ability 
to act as immune modulators.[67] Several studies have 
demonstrated the therapeutic activity of AMPs in‑vitro 

and in‑vivo against many bacteria.[68] AMPs are proven 
to be effective against MDR pathogens, hence they are 
potential candidates for combating AMR. AMPs possess 
several advantages; produce microbicidal activity in the 
micromolecular range, rapidly kill bacteria, and have 
low resistance selection. Furthermore, they demonstrate 
antibacterial action by interfering with multiple targets; 
alter the cell membrane, interfere with the formation of 
protein and cell wall, and others.[67] Human cathelicidin 
peptide  (LL‑37) was proven to be an effective AMP 
against both Gram‑negative and Gram‑positive bacteria 
in previous studies.[69,70] Additionally, it showed 
anti‑biofilm activity against P. aeruginosa, S. aureus, 
and A. baumannii.[69,70] Colistin is a lost resort peptide 
antibiotic used against many Gram‑negative bacteria 
especially MDR pathogens in the hospitalized patients. 
Currently, two colistin‑derived AMPs namely AA139 
and SET‑M33, which act similarly to colistin are in the 
developmental stage, and have shown good activity 
against MDR pathogens in‑vitro and in‑vivo infection 
models.[71]

The major disadvantage of AMPs for systemic use is their 
susceptibility to degradation by proteolytic enzymes 
present in body fluids, i.e.  intestinal mucosa, saliva, 
blood plasma, and others. This would directly affect their 
stability and pharmacokinetic profile. Recently, a newer 
class of peptides that have high specificity and potency, 
termed selectively targeted AMPs (“STAMPS”) have been 
developed.[72] These STAMPs found to have significantly 
increased bactericidal activity against a specific pathogen 
without harming the microbiota because the technology 
utilizes two functionally independent peptide domains 
combined through a small linker; one peptide domain 
functions as killing moiety and other functions as 
high‑affinity binding moiety.[73] Several STAMPs 
developed against Gram‑negative bacteria such as P. 
aeruginosa and Gram‑positive bacteria such as MRSA, E. 
faecalis have shown promising outcomes.[74‑76] However, 
more clinical research still required in the development 
of targeted antimicrobial therapy.

Fecal Microbiota Transplantation

Fecal microbiota transplantation (FMT) is a procedure 
intended to restore the microbiome by infusing stool 
from a healthy donor to a recipient who has a gut 
microbiota imbalance.[77] FMT delivery to the gut can 
be done either through endoscopy, nasogastric tube, or 
ingestion of the capsule.[78] FMT has been described long 
before in 1958 but it increasingly gained importance in 
the last decade for the treatment of many gut disorders.[79] 
Currently, FMT is an accepted treatment for recurrent 
Clostridium difficile infection  (rCDI), also considered 
for treating inflammatory bowel diseases  (IBDs).[78] 
The efficacy and safety of FMT for treating rCDI was 
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proved to be good by several RCT and case series.[80] 
These studies demonstrated the superiority of FMT 
over vancomycin therapy in treating recurrent CDI 
with a high‑recovery rate of more than 90%.[80] Fischer 
et al. revealed a high cure rate (90%) of rCDI with FMT 
in patients who failed maximum antibiotic therapy.[81] 
Another study by Moayyedi et al. reported FMT to be 
superior to vancomycin or placebo therapy.[82] It has 
been suggested that imbalance in normal gut microbiota 
is associated with the pathogenesis of IBDs and FMT 
is beneficial to treat IBDs.[83] However, the efficacy of 
FMT was higher among rCDI compared to IBD patients, 
suggesting many other factors contributing to flare‑up 
of IBDs apart from imbalance of normal microbiota.[84] 
Two recent RCTs have demonstrated 55% response 
to FMT treatment with 20%–30% remission among 
ulcerative colitis patients.[85,86] Furthermore, reports 
suggest flare‑up of IBD in patients treated with FMT, 
and thus careful follow‑up of these patients treated with 
FMT is crucial.[87] Apart from IBD and rCDI, FMT therapy 
was also evaluated and considered for treating several 
conditions such as autoimmune diseases, neurological 
diseases, nonalcoholic steatohepatitis, and inflammatory 
bowel syndrome.[78]

Selecting a donor for stool sample collection is quite 
challenging. In the United States, stool banks have 
emerged wherein stool sample from healthy donors 
was collected, processed, and preserved.[78] A young age 
healthy volunteers were selected as donors after thorough 
screening through history, physical examination, serum, 
and fecal tests for various infectious agents such as 
bacteria, viruses, and parasites.[88] These developments 
have enabled a number of advances in FMT therapy. 
First, FMT therapy by using stool from healthy donors 
was found to be more effective, less expensive, and 
less time‑consuming compared to patient‑directed 
donors. Secondly, the use of multiple healthy donors’ 
fecal samples would enhance microbial diversity 
enormously in recipients.[78] In line with this, an RCT 
study demonstrated better remission in ulcerative colitis 
patients treated with multi‑donor FMT.[86] However, it 
needs more studies to confirm this finding. Currently, 
FMT proved to be much effective in rCDI through RCTs 
and case series. However, certain facts such as long‑term 
risks are unknown. Screening of donors through history 
taking and investigations may not reveal all future 
risks and diseases that might emerge in the donor at a 
later stage. Therefore, high‑quality large‑scale control 
trials are needed to understand FMT efficacy, potential 
benefits, and potential risks.

Probiotics, Prebiotics, and Synbiotics

The gut commensal flora designated as the microbiome 
is gaining importance and increasingly investigated 

to determine its role in the prevention of infection, 
inflammatory diseases, neurologic and immune 
development, and others.[89] The gut microbiome that 
plays a key role in human health is influenced by various 
factors including antibiotic use, nutrition fiber, animal 
byproducts, and environmental sources such as water.[90] 
These factors especially antibiotics and dietary changes 
cause disruption of the normal commensal flora and 
facilitate colonization by pathogens. The pathogens 
carrying antimicrobial‑resistant genes  (ARG) may 
transfer to normal flora and the accumulation of all 
ARGs within the microbiome is labeled as resistomes.[91] 
Subsequently, the gut normal flora carrying resistomes 
can act as a nidus for the transfer of resistant genes 
to pathogens. Furthermore, other stressors that 
cause mucosal damage may facilitate the spread of 
these drug‑resistant strains systemically through the 
bloodstream. With the increase in the frequency of 
infections due to MDR pathogens globally, the gut 
microbiome and resistome modification particularly by 
nutritional modification using prebiotics, probiotics, and 
synbiotics appear to be an ideal approach for a possible 
reduction in drug‑resistant pathogenic infection.[91]

Prebiotics are certain dietary compounds selectively 
fermented by microbiome in the human gut to 
produce metabolic byproducts such as short‑chain fatty 
acids (SCFAs), butyrate, acetate, and propionate.[92] These 
byproducts, particularly SCFAs improve mucosal barrier 
functions in the gut by multiple mechanisms; provision 
of energy for enterocytes, upregulation of epithelial 
tight junctions, promotion of mucus production, 
and upregulation of regulatory T‑cell functions to 
decrease inflammation.[91] In this way, prebiotics 
promotes the expansion of gut commensal flora and 
the reduction of the pathogenic population. Prebiotics 
are not systemically absorbed and are generally safe 
with minimal side effects such as flatulence, altered 
stool consistency, and abdominal cramping.[93] Earlier 
reports have demonstrated the benefits of prebiotics 
in different patients: reduction in gut inflammation in 
patients after ileal pouch‑anal anastomoses, reduction in 
gastrointestinal symptoms in patients after hematopoietic 
stem cell transplantation, and reduction of inflammation 
in a patient with type  2 diabetes.[94‑96] However, the 
research related to the use of prebiotics to manipulate 
microbiome and resistome is still in the infancy stage 
compared to probiotics. Moreover, conducting RCTs 
is challenging since the number of factors need to be 
controlled such as type of diet, fiber content, and amount 
of consumption, etc.[91]

In contrast to prebiotics, probiotics are live bacteria 
or fungi which have a beneficial effect on the human 
host when they are consumed in adequate amounts.[97] 
Lactobacillus, Bifidobacterium, and Saccharomyces boulardii 
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are commonly used/experimented probiotics to prevent 
Clostridium difficile infections, traveler’s diarrhea, 
irritable bowel syndrome, postoperative infections, 
decrease eczema in children or allergic rhinitis, reduce 
risk of hepatic encephalopathy in cirrhosis patients, and 
elimination of Helicobacter pylori infection.[91,97] Probiotics 
benefit through several mechanisms: competitive 
exclusion of pathogenic bacteria, improving intestinal 
barrier function, production of antimicrobial substances 
such as bacteriocins, SCFAs, hydrogen peroxides, etc., 
and by boosting the immune system by improving 
local mucosal cell‑mediated immunity, promoting 
the production of antibodies, and reducing epithelial 
injury.[97] Probiotics have certain additional advantages 
over prebiotics. First, probiotics are naturally found in 
food items such as yogurt, cheese, etc., in addition to 
commercialized products. Second, probiotics synthesize 
certain antimicrobial substances such as bacteriocins 
which can cause the destruction of pathogens and 
prevent biofilm formation. Lastly, probiotics are 
live bacteria, and they can physically occupy an 
epithelial niche and thereby inhibit colonization of the 
pathogen.[91,98] So far, probiotics are better explored 
compared to prebiotics for manipulating microbiome. 
Literature review shows mixed results and so strong 
recommendation for use of probiotics cannot be made.[91] 
One of the potential risks associated with probiotics is 
microbial contamination and the introduction of ARGs 
to the microbiome making them potentially dangerous 
pathogens.[91] Previous studies reported lactobacillus 
bacteremia associated with probiotic therapy in patients 
with central line or IBD.[99,100]

Synbiotics are a combination of both prebiotics 
and probiotics. It involves the administration of 
both metabolic precursors  (prebiotics) and live 
microorganisms (probiotics). Bifidobacterium, Lactobacillus, 
and S. baulardii are the commonly used probiotics, 
while fructose‑oligosaccharide or inulin are used as 
prebiotics.[91] Literature regarding the use of synbiotics 
in combating AMR is very limited. The two available 
studies reported no significant impact of synbiotics 
in countering colonization or eradication of MDR 
pathogens.[101,102] In one study, unexpected colonization 
with candida was observed following synbiotic 
therapy though candida was not included in the 
synbiotic preparation.[101] The colonization disappeared 
immediately after the cessation of the therapy. The 
exact reason for candida overgrowth was unknown, 
but it was believed that overgrowth of candida was 
supported by synbiotic preparation.[101] Another study 
demonstrated that there was no significant impact 
of studied synbiotic in preventing MDR colonization 
compared to placebo.[102] In conclusion, the strategy of 
microbiome modification through probiotics, prebiotics, 
and synbiotics is in the early stage. From the available 

studies, the microbiome modulation approach appears 
to be safe and well‑tolerated by the study population. 
However, strong conclusions to recommend the use of 
probiotics, prebiotics, and synbiotic as an alternative 
strategy to combat AMR cannot be made and it requires 
further exploration.

Herbal Medicine

Herbal medicine involving the use of drugs derived 
from plants and plant extracts has been practiced since 
ancient times especially in developing countries.[103] 
Several essential oils extracted from plants possess 
antimicrobial properties. Moreover, they have low 
cytotoxicity and side effects, degrade quickly in water 
and soil, easy to prepare, and less expensive which 
makes them low‑cost, environment‑friendly alternatives 
to antibiotics.[103,104] A wide range of plants are known 
to have medicinal values. However, only 10% of them 
have been investigated scientifically. Therefore, there 
is a scope for researchers to explore these plants for 
their potential medicinal values.[103] In recent times, 
herbal medicines have been extensively explored to 
evaluate their ability to fight MDR pathogens. Herbal 
medicines like allopathic drugs are known to act by 
several mechanisms: disruption of the cell membrane, 
interaction with membrane proteins such as ATPases, 
inhibition of essential enzyme synthesis, coagulation of 
cellular contents, impairment of proton‑pump function 
with leakage of ions, and others.[103] In addition, some 
herbal medicines such as lemongrass oil are known to 
inhibit bacterial biofilm formation.[105]

Herbal medicines are considered to be useful alternatives 
to treat MDR pathogenic infections, and it is believed 
that microorganisms cannot develop resistance to 
herbal drugs.[106] However, recent reports suggest 
that certain bacteria can counter the bactericidal or 
bacteriostatic effect of herbal medicines.[107] Nosocomial 
pathogens such as P. aeruginosa, K. pneumoniae, and 
E.  coli have shown resistance to certain herbal drugs 
such as turmeric, unripe banana, and lemongrass.[106] 
Brown and Brown have isolated MDR strains resistant 
to ceftriaxone and tetracycline in garlic suspensions.[108] 
Furthermore, drug‑resistant bacteria in herbal medicines 
may act as a source for the transfer of resistant genes to 
commensals in consumers.[109] Ogunshe and Kolajo in 
Nigeria demonstrated the existence of drug resistance 
in indigenous oral flora among consumers of herbal 
medicine.[110] At present, studies revealing microbial 
resistance to herbal drugs are limited and moreover, 
mechanisms of development of resistance are not well 
understood. Therefore, it needs further extensive studies 
to understand the mechanisms of resistance to herbal 
drugs.
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Conclusion

AMR in the number of human pathogens is considered 
one of the most serious global health concerns. Infections 
caused by MDR pathogens are difficult to treat, often 
require expensive and sometimes toxic drugs for 
therapy. Furthermore, infection with MDR‑pathogens 
is associated with high mortality.[111-115] Problems related 
to AMR are increasing day by day and are expected to 
become more problematic worldwide if they are not 
taken seriously. Furthermore, the research toward the 
development of new drugs to combat AMR is becoming 
scarce because antibiotics are no more profitable for 
pharmaceutical companies due to the problem of the 
rapid emergence of drug resistance. Several novel 
approaches explored by scientists in recent times have 
shown promising signs to fight against AMR. However, 
they need to be further explored for their long‑term use 
risk/benefits in humans, bioavailability, toxicity, and 
others. Let us hope these strategies would be a promising 
alternative treatment options to contain dangerous 
drug‑resistant pathogens in the future.

Abbreviation
Ag-NPs- Silver nanoparticles
Al-NPs- Aluminum nanoparticles
Au-NPs - Gold nanoparticles
Au2O3-NPs - Gold oxide nanoparticles
Ce-NPs- Cerium nanoparticles
Cd-NPs - Cadmium nanoparticles
CdO-NPs- Cadmium oxide nanoparticles
CuO-NPs - Copper oxide nanoparticles
Cu-NPs- Copper nanoparticles
Mg-NPs- Magnesium nanoparticles
Ni-NPs- Nickel nanoparticles
Ti-NPs- Titanium nanoparticles
TiO2-NPs- Titanium dioxide nanoparticles
Zn-NPs- Zinc nanoparticles
ZnO-NPs - Zinc oxide nanoparticles
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