Document Type : Original Article
Authors
1 Department of Health Information Technology, Abadan Faculty of Medical Sciences, Abadan, Iran Student Research Committee, Abadan Faculty of Medical Sciences, Abadan, Iran
2 Department of Health Information Technology, School of Paramedical, Ilam University of Medical Sciences, Ilam, Iran
3 Department of Health Information Management, School of Health Management and Information Sciences, Iran University of Medical Sciences, Tehran, Iran
4 Department of Cardiology, School of Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
Abstract
INTRODUCTION: Providing information exchange and collaboration between isolated information
systems (ISs) is essential in the health‑care environments. In this context, we aimed to develop a
communication protocol to facilitate better interoperability among electrophysiology study (EPS)‑related
ISs in order to allow exchange unified reporting in EPS ablation.
MATERIALS AND METHODS: This study was an applied‑descriptive research that was conducted
in 2019. To determine the information content of agreed cardiac EPS Minimum Data Set (MDS) in
Iran, the medical record of patients undergoing EPS ablation procedure in the Tehran Heart Center
(THC) hospital was reviewed by a checklist. Then, an information model based on Health Level
Seven, Clinical Document Architecture (HL7 CDA) standard framework for structural interoperability
has been developed. In this framework, using NPEX online browser and MindMaple software, a set
of terminology mapping rules was used for consistent transfer of data between various ISs.
RESULTS: The information content of each data field was introduced into the heading and body
sections of HL7 CDA document using Systematized Nomenclature of Medicine – Clinical Terminology
names and codes. Then, the ontology alignment was designed in the form of thesaurus mapping
routes.
CONCLUSION: The sensitive, complex, and multidimensional nature of cardiovascular conditions
requires special attention to the interoperability of ISs. Designing customized communication protocols
plays an important role in improving the interoperability, and they are compatible with the needs of
future Iranian health information exchange.
Keywords
- Aydar M. Developing a Semantic Framework for Healthcare
Information Interoperability: Kent State University; 2015. DOI:
http://orcid.org/0000‑0002‑5578‑758X. - 2. Souza AC, de Medeiros AP, Martins CB. Technical interoperability
among EHR systems in Brazilian public health organizations.
Rev Brasil Comput Aplicada 2019;11:42‑55. DOI: 10.5335/rbca.
v11i2.8651.
3. Hammami R, Bellaaj H, Kacem AH. Interoperability for medical
information systems: An overview. Health Technol 2014;4:261‑72.
DOI: 10.1007/s12553‑014‑0085‑8.
4. Ranade‑Kharkar P, Narus SP, Anderson GL, Conway T, Del Fiol G.
Data standards for interoperability of care team information to
support care coordination of complex pediatric patients. J Biomed
Inform 2018;85:1‑9. DOI: 10.1016/j.jbi.2018.07.009.
5. Mirani N, Ayatollahi H, Haghani H. A survey on barriers to the
development and adoption of electronic health records in Iran.
J Health Adm 2013;15(50).
6. Sharifi M, Ayat M, Jahanbakhsh M, Tavakoli N, Mokhtari H,
Wan Ismail WK. E‑health implementation challenges in Iranian
medical centers: A qualitative study in Iran. Telemed J E Health
2013;19:122‑8. DOI: 10.1089/tmj.2012.0071.
7. Park H, Hardiker N. Clinical terminologies: A solution for
semantic interoperability. J Korean Soc Med Informat 2009;15:1‑11.
DOI: https://doi.org/10.4258/jksmi.2009.15.1.1.
8. Gøeg KR, Chen R, Højen AR, Elberg P. Content analysis of
physical examination templates in electronic health records using
SNOMED CT. Int J Med Inform 2014;83:736‑49. DOI: 10.1016/j.
ijmedinf.
9. Slotwiner DJ, Abraham RL, Al‑Khatib SM, Anderson HV,
Bunch TJ, Ferrara MG, et al. HRS White Paper on interoperability
of data from cardiac implantable electronic devices (CIEDs). Heart
Rhythm 2019;16:e107‑27. DOI: 10.1016/j.hrthm.2019.05.002.
10. Shanbehzadeh M, AbdiJ, Ahmadi M. Designing a communication
protocol for acquired immunodeficiency syndrome information
exchange. J Educ Health Promot 2019;8:99. DOI: 10.4103/jehp.
jehp_2_19.
11. Quinn TA, Granite S, Allessie MA, Antzelevitch C, Bollensdorff C,
Bub G, et al. Minimum Information about a Cardiac
Electrophysiology Experiment (MICEE): Standardised reporting
for model reproducibility, interoperability, and data sharing. Prog
Biophys Mol Biol 2011;107:4‑10. DOI: 10.1016/j.pbiomolbio.
12. Dixon BE, Vreeman DJ, Grannis SJ. The long road to semantic
interoperability in support of public health: Experiences from
two states. J Biomed Informat 2014;49:3‑8. DOI: https://doi.
org/10.1016/j.jbi.2014.03.011.
13. Lee G, Sanders P, Kalman JM. Catheter ablation of atrial
arrhythmias: State of the art. Lancet (London, England)
2012;380:1509‑19. DOI: https://doi.org/10.1016/S0140‑6736(12)
61463‑9.
14. Burstein B, Barbosa RS, Kalfon E, Joza J, Bernier M, Essebag V.
Venous thrombosis after electrophysiology procedures:
A systematic review. Chest 2017;152:574‑86. DOI: 10.1016/j.chest.
2017.05.040.
15. Desjardins B. Imaging for cardiac electrophysiology. SA J Radiol
2016;20:1‑8. DOI: http://dx.doi.org/10.4102/sajr.v20i2.1048
16. Neuberger HR, Tilz RR, Bonnemeier H, Deneke T, Estner HL,
Kriatselis C, et al. A survey of German centres performing invasive
electrophysiology: Structure, procedures, and training positions.
Europace 2013;15:1741‑6. DOI: 10.1093/europace/eut149.
17. Vasheghani‑Farahani A, Shafiee A, Akbarzadeh M,
Bahrololoumi‑Bafruee N, Alizadeh‑Diz A, Emkanjoo Z, et al.
Acute complications in cardiac electrophysiology procedures:
A prospective study in a high‑volume tertiary heart center. Res
Cardiovasc Med 2018;7:20. DOI: 10.4103/rcm.rcm_34_17.
18. Kazemi‑Arpanahi H, Vasheghani‑Farahani A, Baradaran A,
Ghazisaeedi M, Mohammadzadeh N, Bostan H. Development
of a minimum data set for cardiac electrophysiology study
ablation. J Educ Health Promot 2019;8:101. DOI: 10.1016/j.
jacep.2018.11.013.
19. Sagita AA, Nurlaela L, Widodo W, editors. Mind Maple Lite
Software: Improve Student’s Learning Outcomes and Stimulating
Metacognition in Nutrition Science Subject. 1st International
Conference on Social, Applied Science and Technology in Home
Economics (ICONHOMECS 2017). New York: Atlantis Press;
2017. DOI: https://doi.org/10.2991/iconhomecs‑17.2018.1.
20. Marshall S, Harrison J, Flanagan B. The teaching of a structured
tool improves the clarity and content of interprofessional clinical
communication. Qual Saf Health Care 2009;18:137‑40. DOI:
10.1136/qshc.2007.025247.
21. Ciubotaru B, Muntean GM. Network Communications Protocols
and Services. Advanced Network Programming–Principles and
Techniques. London: Springer; 2013. p. 29‑52.
22. Shade SB, Chakravarty D, Koester KA, Steward WT, Myers JJ.
Health information exchange interventions can enhance quality
and continuity of HIV care. Int J Med Informat 2012;81:e1‑9. DOI:
https://doi.org/10.1016/j.ijmedinf.2012.07.003.
23. Kohl P, Mirams G, Quinn TA, Wang K. Minimum information
about a cardiac electrophysiology experiment (MICEE):
Standardised reporting for model reproducibility‚ interoperability‚
and data sharing. Prog Biophys Mol Biol 2011 Oct 1;107(1):4‑10.
DOI: https://doi.org/10.1016/j.pbiomolbio.2011.07.001.
24. Gansel X, Mary M, van Belkum A. Semantic data interoperability,
digital medicine, and e‑health in infectious disease management:
A review. Eur J Clin Microbiol Infect Dis 2019;38:1023‑34. DOI:
10.1016/j.ijmedinf.2012.06.004.
25. Rahimi A, Liaw ST, Taggart J, Ray P, Yu H. Validating an
ontology‑based algorithm to identify patients with type 2
diabetes mellitus in electronic health records. Int J Med Inform
2014;83:768‑78. DOI: 10.1007/s10096‑019‑03501‑6.
26. Jabbar S, Ullah F, Khalid S, Khan M, Han K. Semantic
interoperability in heterogeneous IoT infrastructure for
healthcare. Wirel Comm Mobile Comput 2017; 2017. DOI:
10.1007/s10096‑019‑03501‑6.
27. Adel E, El‑Sappagh S, Barakat S, Elmogy M. Ontology‑Based
Electronic Health Record Semantic Interoperability:
A Survey. U‑Healthcare Monitoring Systems. Amsterdam:
Elsevier; 2019. p. 315‑52. DOI: https://doi.org/10.1016/
B978‑0‑12‑815370‑3.00013‑X.
28. Janaswamy S, Kent RD, editors. Semantic Interoperability and
Data Mapping in EHR Systems. 2016 IEEE 6th International
Conference on Advanced Computing (IACC). IEEE; 2016. DOI:
10.1109/IACC.2016.31.
29. Yang M, Loeb DF, Sprowell AJ, Trinkley KE. Design and
implementation of a depression registry for primary care. Am J Med
Q 2019;34:59‑66. DOI: https://doi.org/10.1177/1062860618787056.
30. Hurvitz EA, Gross PH, Gannotti ME, Bailes AF, Horn SD.
Registry‑based research in cerebral palsy: The cerebral palsy
research network. Phys Med Rehabil Clin N Am 2020;31:185‑94.
DOI: 10.1016/j.pmr.2019.09.005.
31. Duftschmid G, Wrba T, Rinner C. Extraction of standardized
archetyped data from electronic health record systems based on
the entity‑attribute‑value model. Int J Med Inform 2010;79:585‑97.
DOI: 10.1016/j.ijmedinf.2010.04.007.
32. Ahmadi M, Foozonkhah S, Shahmoradi L, Mahmodabadi AD.
Messaging standard requirements for electronic health records
in Islamic Republic of Iran: A Delphi study. East Mediterr Health
J 2017;22:794‑801. DOI: 10.26719/2016.22.11.794.
33. Van der Velde ET, Foeken H, Witteman TA, van Erven L,
Schalij MJ. Integration of data from remote monitoring systems
and programmers into the hospital electronic health record system
based on international standards. Neth Heart J 2012;20:66‑70. DOI:
10.1007/s12471‑011‑0234‑x.